The Common C49620T Polymorphism in the Sulfonylurea Receptor Gene SUR1 (ABCC8) in Patients with Gestational Diabetes and Subsequent Glucose Metabolism Abnormalities

نویسندگان

  • Piotr Molęda
  • Agnieszka Bińczak-Kuleta
  • Katarzyna Homa
  • Krzysztof Safranow
  • Zbigniew Celewicz
  • Anhelli Syrenicz
  • Adam Stefański
  • Aneta Fronczyk
  • Lilianna Majkowska
چکیده

AIM The aim of this study is to investigate the relationship between the common C49620T polymorphism in the sulfonylurea receptor (SUR1) gene and glucose metabolism, β-cell secretory function and insulin resistance in women with a history of gestational diabetes (GDM). MATERIAL AND METHODS Study group included 199 women, diagnosed GDM within the last 5-12 years and control group of comparable 50 women in whom GDM was excluded during pregnancy. Blood glucose and insulin levels were measured during oral glucose tolerance test. Indices of insulin resistance (HOMA-IR) and β-cell function (HOMA %B) were calculated. In all patients, the C49620T polymorphism in intron 15 of the SUR1 gene was determined. RESULTS The distribution of the studied polymorphism in the two groups did not differ from each other (χ(2) = 0.34, P = 0.8425). No association between the distribution of polymorphisms and coexisting glucose metabolism disorders (χ(2) = 7,13, P = 0, 3043) was found. No association was also observed between the polymorphism and HOMA %B or HOMA-IR. CONCLUSIONS The polymorphism C49620T in the SUR1 gene is not associated with insulin resistance and/or insulin secretion in women with a history of GDM and does not affect the development of GDM, or the development of glucose intolerance in the studied population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of C49620T ABCC8 polymorphism with anthropometric and metabolic parameters in patients with autosomal dominant polycystic kidney disease: a preliminary study.

BACKGROUND The aim of the study was to evaluate an association between the C49620T ABCC8 gene polymorphism and anthropometric, biochemical parameters, pancreatic β-cell function and insulin sensitivity among autosomal dominant polycystic kidney disease (ADPKD) patients. METHODS Forty-nine ADPKD patients (M/F: 19/30) and fifty healthy controls (M/F: 22/28) aged above 18 years, with normal kidn...

متن کامل

New ABCC8 mutations in relapsing neonatal diabetes and clinical features.

Activating mutations in the ABCC8 gene that encodes the sulfonylurea receptor 1 (SUR1) regulatory subunit of the pancreatic islet ATP-sensitive K(+) channel (K(ATP) channel) cause both permanent and transient neonatal diabetes. Recently, we have described the novel mechanism where basal Mg-nucleotide-dependent stimulatory action of SUR1 on the Kir6.2 pore is increased. In our present study, we ...

متن کامل

Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region.

The genes for the sulfonylurea receptor (SUR1; encoded by ABCC8) and its associated islet ATP-sensitive potassium channel (Kir6.2; encoded by KCNJ11) are adjacent to one another on human chromosome 11. Multiple studies have reported association of the E23K variant of Kir6.2 with risk of type 2 diabetes. Whether and how E23K itself-or other variant(s) in either of these two closely linked genes-...

متن کامل

Pharmacogenomics of glibenclamide in patients with type 2 diabetes mellitus: A systematic review

Introduction: One of the most widely used anti-diabetic drugs is sulfonylureas, which is often used as one of the first-line drugs in the treatment of type 2 diabetes. Due to the effect of the patient's genetic structure on the drug response (personalized medicine), the identification of genetic variations not only reduces the rate of adverse drug reactions but can also predict the effectivenes...

متن کامل

Transient neonatal diabetes mellitus caused by a de novo ABCC8 gene mutation

Transient neonatal diabetes mellitus (TNDM) is a rare form of diabetes mellitus that presents within the first 6 months of life with remission in infancy or early childhood. TNDM is mainly caused by anomalies in the imprinted region on chromosome 6q24; however, recently, mutations in the ABCC8 gene, which encodes sulfonylurea receptor 1 (SUR1), have also been implicated in TNDM. Herein, we pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012